412
submitted 1 year ago by L4s@lemmy.world to c/technology@lemmy.world

Scientists develop mega-thin solar cells that could be shockingly easy to produce: ‘As rapid as printing a newspaper’::These cells could be laminated onto various kinds of surfaces, such as the sails of a boat to provide power while at sea.

top 50 comments
sorted by: hot top controversial new old
[-] masterspace@lemmy.ca 165 points 1 year ago* (last edited 1 year ago)

If it's shockingly easy to produce then just do it and then you can write a declarative headline that doesn't need to use the word "could". If you can't then I'm guessing it's not that shockingly easy.

[-] NocturnalMorning@lemmy.world 63 points 1 year ago

I mean, even if it's easy to do, that doesn't mean a manufacturing process is easy to ramp up. You need equipment to produce it, and people to do it. Logistics of that isn't like just turning on/off a light switch.

[-] frezik@midwest.social 19 points 1 year ago

Some people have never tried getting a product to market before, and it shows.

[-] eronth@lemmy.world 15 points 1 year ago

I would wager most of us haven't.

[-] Daft_ish@lemmy.world 7 points 1 year ago

I don't care what you say the am/fm butt plug was going to be revolutionary!

load more comments (1 replies)
[-] tonyn@lemmy.ml 17 points 1 year ago

Without headlines, no investors. Without investors, no equipment. Without equipment, no product. Headlines like these drive investment.

load more comments (5 replies)
[-] KairuByte@lemmy.dbzer0.com 32 points 1 year ago

To echo the other individual who replied, it’s shockingly easy to make injection molded parts, but there is usually a long process before you bring the final product to market. And that’s with all the manufacturing processes already existing at scale.

In this case, the processes need to be fleshed out from scratch, which adds even more time to the ramp up. So even if the headline is 100% accurate, and there are no other roadblocks, it would still take a significant chunk of time to bring to market.

load more comments (1 replies)
[-] Meowoem@sh.itjust.works 5 points 1 year ago

Yeah, how dare they report on science and technology - I've barely seen a dozen articles about Will Smith's personal life today, we don't have resources to waste talking about successful research projects from MIT!

When MIT get in a salacious romance scandal then they can have a bit of our precious media space but get the fuck out of here with your science bullshit nerds.

load more comments (2 replies)
[-] PlutoniumAcid@lemmy.world 71 points 1 year ago

"mega-thin"? Is that like "micro-large"?

Pepperidge Farm remembers when journalists had a grasp of the language.

[-] Kalkaline@leminal.space 55 points 1 year ago

They should have just used "hella-thin".

[-] Viking_Hippie@lemmy.world 29 points 1 year ago

Or "wicked thin" for the New England audience.

[-] SkybreakerEngineer@lemmy.world 7 points 1 year ago
[-] silasmariner@programming.dev 3 points 1 year ago

AM I DOING THIN RIGHT?

load more comments (1 replies)
[-] RubberElectrons@lemmy.world 3 points 1 year ago* (last edited 1 year ago)

Lol I thought the same thing on first read. Then again "micro thin" sounds redundant..

[-] Chronographs@lemmy.zip 4 points 1 year ago

“It has a large amount of thinness” Mega-thin is fine lol. I do like hella-thin though

[-] PlutoniumAcid@lemmy.world 6 points 1 year ago

Thin. Very thin, paper-thin. Ultra-thin if you want hyperbole.

load more comments (1 replies)
[-] Burn_The_Right@lemmy.world 69 points 1 year ago

This kind of affordable tech has been promised as "about to hit the market" since 2003. I'll believe it when I see it on the market.

[-] BearOfaTime@lemm.ee 8 points 1 year ago

Since 1975, which is as far back as I can remember with this stuff.

I'm sure my parents would say the same.

[-] MaxVoltage@lemmy.world 7 points 1 year ago

bro i can run LED lights by putting wires inside my body

load more comments (1 replies)
load more comments (1 replies)
[-] MeanEYE@lemmy.world 25 points 1 year ago

This has its own applications but I can't say I've ever heard anyone complain about thickness of solar panels. Efficiency, power generated, etc. Sure.

[-] Dran_Arcana@lemmy.world 35 points 1 year ago

I don't think it's so much about thickness, but being super thin presumably means it requires less of a manufacturing process and also less raw materials. Could bring costs down on panels and make them more financially viable for projects.

[-] laurelraven@lemmy.blahaj.zone 5 points 1 year ago

On top of that, could make them viable for other surfaces that might not have been a good fit for them with current tech

load more comments (1 replies)
[-] tal@lemmy.today 29 points 1 year ago

Although the cells can only generate half the energy per unit area compared to traditional silicon panels, they can generate 18 times more power per kilogram, Fast Company reported.

For most users, I'd guess that unit area is more important. But for satellites, I suppose that as long as they can unfold, space isn't really an issue. You've got all of outer space to spread out into. But weight determines a lot of the cost of putting the thing up in space, so you'd like that to be low.

[-] frezik@midwest.social 17 points 1 year ago* (last edited 1 year ago)

If they're cheap enough, you can just slap them on any available surface that gets a marginal amount of sunlight. Doubly so if they're flexible.

load more comments (1 replies)
[-] MeanEYE@lemmy.world 4 points 1 year ago

Weight does play a huge role for satellites and to be honest I have very little knowledge of solar panels they use. However since solar sail is a thing, I'd argue surface is indeed a factor with satellites. But perhaps they managed to get some use there. There might be even other use cases I just didn't think about. My original comment was mostly pointing out that thickness was rarely as big of an issue as it was efficiency.

load more comments (2 replies)
[-] mortalic@lemmy.world 15 points 1 year ago

Use cases increase if they are thin. Instead of limited to rooftops. For example, take a look at what Aptera is doing.

load more comments (2 replies)
[-] JungleJim@sh.itjust.works 11 points 1 year ago* (last edited 1 year ago)

Clearly you've never ~~owned an air fryer~~ wanted a solar powered car. Or imagine shipping containers covered in these powering the trucks that haul them! Or trains! Even boats. Basically any kind of self powered transit, especially ones with greater surface area.

Second edit: Another idea! Clingfilm solar panels for windows, or blinds and curtains that can power the lights!

Or wind turbines skinned in thin, light, flexible solar panels. You'd double dip on energy per square meter. You could have a solar farm on a stick that also makes wind energy.

[-] MeanEYE@lemmy.world 4 points 1 year ago

If you dream of covering a vehicle with panels and have it driven by that power, I have to burst your bubble. That's not even nearly enough surface to generate enough power. Perhaps assist in trickle charging battery, sure. But we already have flexible panels, even self-adhesive ones. And again, their biggest downside is not their thickness but efficiency. There will never be a self-propelled vehicle. Just a nature of things.

As for window blinds, etc. There is already glass that lets enough light through and can generate electricity. Those are even worse when it comes to efficiency due to non-ideal angle, light passing through, etc.

[-] JungleJim@sh.itjust.works 11 points 1 year ago

"We already have technology that doesn't do those things well enough, so this new technology that won't see advancement ever has no chance of addressing these issues either."

Trickle charge is awesome. Trickle charge the semi during your 8 hour driving shift and then another 8 hours while the trucker is asleep. If that nets half a charge every other day, that's a charge and a half a week. It's not self powered like a perpetual motion device, those aren't real. But regenerative braking is a worthwhile addition to an electric truck. Why wouldn't solar paper or whatever we want to call it also be part of the solution?

[-] MeanEYE@lemmy.world 5 points 1 year ago

More like, it would take 8 days of constant sun to have an hour of driving.

load more comments (7 replies)
load more comments (14 replies)
load more comments (15 replies)
[-] Treczoks@lemmy.world 6 points 1 year ago

First, the thickness factor plays into flexibility. Just imagine surfaces of every shape being covered in solar cells. Flexible panels could also be less prone to breakage.

Second, with "as rapid as printing a newspaper", this might be a major cost-reduction thing, even on top of the process needing less high-pure Si material.

This might make solar power generation more attractive even if the efficiency would be lower than other methods, because this would drive the ratio $/kw down.

load more comments (4 replies)
[-] NeoNachtwaechter@lemmy.world 3 points 1 year ago
load more comments (1 replies)
[-] Lophostemon@aussie.zone 17 points 1 year ago* (last edited 1 year ago)

AFAIK this was previously developed about 5 years ago in Australia at the University of Newcastle Engineering Dept.

Not sure why this lot n the US is claiming credit for it.

https://www.newcastle.edu.au/newsroom/featured/public-debut-for-printed-solar

[-] SCB@lemmy.world 17 points 1 year ago

It's a different process. Multiple processes with varied applications are absolutely essential to making this style of solar the norm

It's a great thing that this particular field continues to see innovation.

New process

Scientists used electronic printable inks, using a technique similar to how designs are printed on t-shirts. As these thin solar cells are difficult to handle and can tear easily, scientists searched for a lightweight, flexible, and resilient material that could adhere to those solar cells. The fabric they chose was Dyneema Composite Fabric, a material known for its incredible strength.

After printing the electrodes on a flat sheet of plastic, they glued the sheet of plastic on Dyneema. Lastly, they peeled away the fabric, which has picked up the electrodes, leaving a clean sheet of plastic behind.

Your linked process:

The organic solar cells being deployed have been printed on laminated polyethylene terephthalate (PET) plastic by a printer formerly used for wine labels.

The 18 metre long ultralight and ultraflexible strips are similar in thickness and appearance to a chip packet, the university team have said.

load more comments (2 replies)
load more comments (2 replies)
[-] trackindakraken@lemmy.whynotdrs.org 14 points 1 year ago* (last edited 1 year ago)

Man, y'all a bunch a grumpies.

This technology doesn't hinge on what we here believe or predict. It will happen or it won't.

We could speculate on how cool it would be, and how it could be used if it happens, instead of pooh-poohing it.

[-] systemglitch@lemmy.world 13 points 1 year ago

I'll believe it when I see it.

[-] Zaddy@lemmy.world 7 points 1 year ago

You guys realize that this is a significant step towards having moving pictures like in Harry Potter right?

load more comments (1 replies)
[-] Metal_Zealot@lemmy.ml 3 points 1 year ago

And then we never heard of this miracle technology again

load more comments (1 replies)
load more comments
view more: next ›
this post was submitted on 05 Dec 2023
412 points (97.2% liked)

Technology

60337 readers
4025 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS