47
submitted 1 year ago by hypnotoad__@lemmy.ml to c/asklemmy@lemmy.ml

Like, say you had a grain silo or some theoretical structure that would allow you to fill the structure as high as you wanted, full of balloons, all inflated with regular air, not helium.

Is there a point where the balloons' collective miniscule weight would be enough to pop the balloons on the bottom? Or would they just bounce/float on top of each other forever and ever?

top 20 comments
sorted by: hot top controversial new old
[-] blazera@kbin.social 19 points 1 year ago

I think this gets a bit more complicated. A balloon pops due to the rubber reaching its elastic limit as the internal pressure pushes outward against a lower pressure environment

But in a confined space like a silo, the internal pressures will all be pushing into, and pushed by, eachother. Each balloon only has so much room to expand into, if theyre fairly elastic balloons they can fill that space without surpassing the rubbers elastic limit. It would be a pretty good example of voronoi noise actually.

So, instead of imagining the weight one balloon can support before popping, imagine how much weight a thin section of balloon rubber can handle before rupturing, like under a hydraulic press.

[-] usualsuspect191@lemmy.ca 3 points 1 year ago

I'm wondering if the balloons at the bottom would all end up as cubes or something and not be able to pop as every surface would be supported and therefore unable to stretch and break. Think of the straight borders that form when bubbles bunch together

[-] blazera@kbin.social 5 points 1 year ago

Look up voronoi noise, its exactly this scenario, circles or spheres in random assortment expanding to form straight edges against eachother. Its a pattern that often shows up in nature for that reason.

[-] usualsuspect191@lemmy.ca 1 points 1 year ago

Yes, this is the sort of thing I'm thinking. Would then the balloons be unable to pop since they'd be perfectly supported? I feel the pressure in adjacent balloons would equalise so no one balloon could grow enough to break.

[-] blazera@kbin.social 3 points 1 year ago

Hard to say. With weights being distributed randomly i dont know if it would naturally equalize like that, or if there might be random pockets of increased or decreased pressure, or something might slip. Variables like weak spots in the rubber, friction and static. Needs testing

[-] thebestaquaman@lemmy.world 0 points 1 year ago

Great answer! I'm just commenting because I think this would be a question that would be nice to post on c/askscience where I regularly lurk and look for cool questions to answer, but where there aren't too many questions being asked yet :)

Hi there! Looks like you linked to a Lemmy community using a URL instead of its name, which doesn't work well for people on different instances. Try fixing it like this: !askscience@lemmy.world

[-] moistclump@lemmy.world 1 points 1 year ago

I went there but only one post showed up. Couldn’t find a similar active one on lemmyworld. Is it a different server?

[-] LonelyWendigo@lemmy.world 13 points 1 year ago

Stacks of particulate stuff like sand and grain tend to act a like a fluid when stacked or piled in containers like a silo. You don't feel the pressure in the deep bottom of a pool only from the top, you feel it from every direction as pressure. The mass of grain in a silo pushes against the sides almost as much as down. Think about what would happen to the grain if the silo were magically removed in an instant. It would spread out into a larger diameter pile. This is how we can store things in a silo without absolutely crushing the stuff at the bottom into dust. The science and math behind why it happens is complicated and beyond my ability to better explain this early in the morning, but I'd guess that balloons in a silo would behave similarly. The pressure on the ballons experiencing the most forces would be coming from all sides, like the pressure differential you feel when diving in deep water. That pressure would tend to decrease the volume of the ballons, possibly making them less likely to pop. At a certain point you'd just have big celled foam made of latex rubber and you'd be crushing that.

[-] hemko@lemmy.world 4 points 1 year ago* (last edited 1 year ago)

This is my thought as well. In the end it would be similar to bringing a balloon deep under water, the pressure from all sides would just compress the air inside the to match the pressure outside the balloon. Unless if the rubber had some bad imperfections that were to break under pressure, the balloon should survive.

[-] HobbitFoot@thelemmy.club 7 points 1 year ago

I don't see them popping beyond the potential friction of rubber on rubber.

The main issue seems to be you have a compressible fluid undergoing compression due to the weight of the rubber in the balloons. As you went down, the balloons would likely look less deflated until they looked not inflated at all. At that point, you might start to get the rubber from the balloons bonding together. As the mass shrinks, you are probably going to get a friction force of the rubber against the silo wall causing shear within the system. This is what will likely cause individual balloons to pop, but at this point the whole mass will be pushed together to a point to not let air escape.

[-] tko@tkohhh.social 5 points 1 year ago

This is a question for Randall Munroe. I wish I knew how to summon him.

[-] Hupf@feddit.de 2 points 1 year ago
[-] NightAuthor@beehaw.org 2 points 1 year ago

Given: a balloon will pop when pressed with enough weight Given: a balloon filled with air has a positive weight

Stack enough balloons on top of a balloon, it’ll pop.

Though…. Given the added complexity of our atmosphere not being homogenous, you might have balloons popping from expansion from going too high before you get them being crushed below.

[-] dom@lemmy.ca 2 points 1 year ago

What's the weight of one balloon?

What's the amount of force/pressure needed to pop a balloon?

[-] AzzyDev@beehaw.org 1 points 1 year ago* (last edited 1 year ago)

Is this question assuming air pressure and gravity loss at higher altitudes, or is it assuming that the full structure would have a consistent air pressure and gravity? If so, would it be from sea level?

A standard party balloon is around 3 grams if I had to guesstimate, so you could probably figure out how much weight it would take to burst a single balloon, and divide that by 3 grams to get the number of balloons. The main problem with that is the varying amounts that buoyancy and gravity would provide the upward or downward forces.

[-] MrJameGumb@lemmy.world 0 points 1 year ago

I think the answer is yes, but I'm not a skilled enough mathematician to give you a great answer... The little bit of information I found online says that a standard size party balloon weighs about 0.14oz, and takes a little more than a pound of pressure to pop a very full balloon, so presumably it would take at the very least the weight of 114 balloons all pressing down on one balloon to come close to popping it. So if you had a very tall and very narrow enclosure where there are only a few balloons on the bottom layer then they would probably pop under the weight of just a few thousand balloons.

So the short answer is yes, but for a definitive answer you would need to know how fully each balloon is inflated, the thickness of the balloons, how many are on the bottom layer, what the ambient air pressure in the room is, the temperature, are you above or below sea level etc.

Once you had all that information you would then need to give it to someone better at math than I am to figure out lol

[-] errer@lemmy.world 1 points 1 year ago

Have you ever handled a balloon before? They can take way more than a pound of pressure…that’s like barely squeezing it.

[-] DontAskAboutUpdog@lemmy.world 0 points 1 year ago
[-] fuzzybee@lemm.ee 2 points 1 year ago

Because it's surrounded by a bunch of other balloons pressing evenly on it. There's so place to pop.

load more comments
view more: next ›
this post was submitted on 26 Jul 2023
47 points (96.1% liked)

Asklemmy

43586 readers
1768 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy 🔍

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~

founded 5 years ago
MODERATORS