207
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 20 May 2024
207 points (94.0% liked)
Technology
60232 readers
3668 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
Yes unified and extremely slow compared to an ARM architecture’s unified memory, as the GPU sort of acts as if it was discrete.
Do you have any sources for this? Can't seem to find anything specific describing the behaviour. It's quite surprising to me since the Xbox and PS5 uses unified memory on x86-64 and would be strange if it is extremely slow for such a use case.
It’s been a while since I’ve coded on the Xbox, but at least in the 360, the memory wasn’t really unified as such. You had 10 MB of EDRAM that formed your render target and then there was specialised functions to copy the EDRAM output to DRAM. So it was still separated and while you could create buffers in main memory that you access in the shaders, at some penalty.
It’s not that unified memory can’t be created, but it’s not the architecture of a PC, where peripheral cards communicate over the PCI bus, with great penalties to touch RAM.
Well for the current generation consoles they're both x86-64 CPUs with only a single set of GDDR6 memory shared across the CPU and GPU so I'm not sure if you have such a penalty anymore
Are there any tests showing the difference in memory access of x86-64 CPUs with iGPUs compared to ARM chips?