404
you are viewing a single comment's thread
view the rest of the comments
[-] MinekPo1@lemmygrad.ml 1 points 6 months ago

you forgot about updating the hashes of items after items which were modified , so while it could be slightly faster than O((n!×n)²) , not by much as my data shows .

in other words , every time you update the first hash you also need to update all the hashes after it , etcetera

so the complexity is O(n×n + n×(n-1)×(n-1)+...+n!×1) , though I dont know how to simplify that

[-] magic_lobster_party@kbin.run 2 points 6 months ago* (last edited 6 months ago)

My implementation: https://pastebin.com/3PskMZqz

Results at bottom of file.

I’m taking into account that when I update a hash, all the hashes to the right of it should also be updated.

Number of hashes is about 2.71828 x n! as predicted. The time seems to be proportional to n! as well (n = 12 is about 12 times slower than n = 11, which in turn is about 11 times slower than n = 10).

Interestingly this program turned out to be a fun and inefficient way of calculating the digits of e.

[-] MinekPo1@lemmygrad.ml 2 points 6 months ago

Agh I made a mistake in my code:

if (recalc || numbers[i] != (hashstate[i] & 0xffffffff)) {
	hashstate[i] = hasher.hash(((uint64_t)p << 32) | numbers[i]);
}

Since I decided to pack the hashes and previous number values into a single array and then forgot to actually properly format the values, the hash counts generated by my code were nonsense. Not sure why I did that honestly.

Also, my data analysis was trash, since even with the correct data, which as you noted is in a lineal correlation with n!, my reasoning suggests that its growing faster than it is.

Here is a plot of the incorrect ratios compared to the correct ones, which is the proper analysis and also clearly shows something is wrong.

Desmos graph showing two data sets, one growing linearly labeled incorrect and one converging to e labeled #hashes

Anyway, and this is totally unrelated to me losing an internet argument and not coping well with that, I optimized my solution a lot and turns out its actually faster to only preform the check you are doing once or twice and narrow it down from there. The checks I'm doing are for the last two elements and the midpoint (though I tried moving that about with seemingly no effect ???) with the end check going to a branch without a loop. I'm not exactly sure why, despite the hour or two I spent profiling, though my guess is that it has something to do with caching?

Also FYI I compared performance with -O3 and after modifying your implementation to use sdbm and to actually use the previous hash instead of the previous value (plus misc changes, see patch).

[-] magic_lobster_party@kbin.run 2 points 6 months ago

It has been a pleasure having this internet argument with you. I learned a bit, and you learned a bit. It’s a win win :)

this post was submitted on 22 Jun 2024
404 points (97.4% liked)

Programmer Humor

19910 readers
1748 users here now

Welcome to Programmer Humor!

This is a place where you can post jokes, memes, humor, etc. related to programming!

For sharing awful code theres also Programming Horror.

Rules

founded 2 years ago
MODERATORS