20
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 24 Jul 2024
20 points (85.7% liked)
Asklemmy
44267 readers
961 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
It's like a shorter, less demanding space elevator that spins with a counterweight. It would enable you to reversibly fling things in and out of orbits just using mechanical force.
Wikipedia has an article complete with a nice gif of how it would move in this exact scenario, to connect with a craft at 0 groundspeed.
From that gif it looks like the sky hook has to be orbiting. But then its release point is giving objects twice the velocity required for orbit.
Depends where you release. I haven't actually done the orbital calculations for this, but I'm assuming there's some setup that would work for juggling scheduled flights around the globe. If not, it's a better propulsion technique or bust, basically.
Yeah, there must be some point on the arc that gets you back to some point on Earth
Several. Not getting on the skyhook sends you straight down, getting off at the top puts you into a solar orbit (escape velocity from Earth is ~11km/s, local escape velocity from Sol is ~42km/s, and we end up with 15km/s or so). In between releases should somehow do in between things.
You also need to have a skyhook in sync at the destination as you land, though, and they need to switch out between scheduled flights to keep a reasonable momentum, so it gets complicated. I realised after writing this you probably want to be able to survivably "crash land" at orbital speed if you miss the tether coming down, so that adds weight as well.
I'd still guess it's viable.