858
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 11 Aug 2024
858 points (99.1% liked)
Mildly Interesting
17592 readers
2 users here now
This is for strictly mildly interesting material. If it's too interesting, it doesn't belong. If it's not interesting, it doesn't belong.
This is obviously an objective criteria, so the mods are always right. Or maybe mildly right? Ahh.. what do we know?
Just post some stuff and don't spam.
founded 2 years ago
MODERATORS
ok just so we're clear here, you wouldnt ramp up or down nuclear power output, unless you're doing maintenance. It's at or near 100% power output, always. Most plants sit at a capacity factor of about 80-90%
You would however, ramp down wind turbines, or dump solar, or even store that solar since you're in a peaking cycle.
Solar and wind are cheaper and potentially more plentiful, more distributed than nuclear. Renewables are going to be the primary source of power; nuclear and every other type of generation will augment the renewables.
What you're saying is what nuclear has been, not what it will be.
potentially, that's always an option, but unlike something like oil where it's a generic concept, energy is kind of an ethereal concept. I see it much more likely that if nuclear plants get sufficient development time and funds, that they will pair nicely with renewables as you can buy the electricity wholesale at price, but the versatility of the pricing will offset the increased cost as you can subsidize it using cheaper renewables.
Allowing you to minimize energy storage and some amount of renewable production as well.
I wouldn't be surprised if grids ended up using solar primarily for day time production consumption and short time storage (evening consumption time) and then used nuclear as the primary producer for power consumption over night, along with wind somewhere in the mix. But this would require nuclear power to be built in the first place.
Exactly. Nuclear carries us overnight, renewables meet our needs during the day.
Negative rates aren't caused by excess solar. Negative rates are caused by excess overnight demand. Overnight demand is too high, necessitating the continuous nuclear output to be set too high. The sum of the continuous nuclear and the daytime solar exceeds daytime demand; rates go negative to correct.
The solution is to remove nighttime demand. Now the continuous nuclear output can be reduced. This is exactly opposite of what the grid needed before renewables, but it is the only viable approach moving forward. The other half of the solution is to add daytime demand, perhaps the same demand we removed from overnight; perhaps an entirely new way to turn power into profit.
(Nuclear plants won't actually reduce their output. Coal plants will go offline, and nuclear will take over their customers.)
oh well if you're arguing for shutting down nuclear, it's a bit different of a story. You should probably change your phrasing to reflect that lol.
I mean, long term, nuclear should probably go away, but that's a distant objective. I'm talking about the next few years, not the next century.
The next major stage is to reorient the grid away from the traditional, supply-shaping "baseload + peaker" model that benefits from increased overnight demand. That model is replaced with a demand-shaping, "use it when it's easiest to produce" model.
To get from here to there, we need to reverse the incentives that drive overnight consumption. This in turn lowers overnight demand. That reduction in overnight demand calls for a reduction in baseload supply, which reduces baseload generation at night and during the day as well. A reduction of baseload during the day means less surplus power is dumped, and more is sold.