444
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 18 Sep 2024
444 points (94.2% liked)
Technology
60130 readers
2755 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
Because it's not actually always true that garbage in = garbage out. DeepMind's Alpha Zero trained itself from a very bad chess player to significantly better than any human has ever been, by simply playing chess games against itself and updating its parameters for evaluating which chess positions were better than which. All the system needed was a rule set for chess, a way to define winners and losers and draws, and then a training procedure that optimized for winning rather than drawing, and drawing rather than losing if a win was no longer available.
Face swaps and deep fakes in general relied on adversarial training as well, where they learned how to trick themselves, then how to detect those tricks, then improve on both ends.
Some tech guys thought they could bring that adversarial dynamic for improving models to generative AI, where they could train on inputs and improve over those inputs. But the problem is that there isn't a good definition of "good" or "bad" inputs, and so the feedback loop in this case poisons itself when it starts optimizing on criteria different from what humans would consider good or bad.
So it's less like other AI type technologies that came before, and more like how Netflix poisoned its own recommendation engine by producing its own content informed by that recommendation engine. When you can passively observe trends and connections you might be able to model those trends. But once you start actually feeding back into the data by producing shows and movies that you predict will do well, the feedback loop gets unpredictable and doesn't actually work that well when you're over-fitting the training data with new stuff your model thinks might be "good."
good commentary, covered a lot of ground - appreciate the effort to write it up :)
Another great example (from DeepMind) is AlphaFold. Because there's relatively little amounts of data on protein structures (only 175k in the PDB), you can't really build a model that requires millions or billions of structures. Coupled with the fact that getting the structure of a new protein in the lab is really hard, and that most proteins are highly synonymous (you share about 60% of your genes with a banana).
So the researchers generated a bunch of "plausible yet never seen in nature" protein structures (that their model thought were high quality) and used them for training.
Granted, even though AlphaFold has made incredible progress, it still hasn't been able to show any biological breakthroughs (e.g. 80% accuracy is much better than the 60% accuracy we were at 10 years ago, but still not nearly where we really need to be).
Image models, on the other hand, are quite sophisticated, and many of them can "beat" humans or look "more natural" than an actual photograph. Trying to eek the final 0.01% out of a 99.9% accurate model is when the model collapse happens--the model starts to learn from the "nearly accurate to the human eye but containing unseen flaws" images.