105
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 13 Oct 2024
105 points (81.1% liked)
Technology
60182 readers
1748 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
I'm not sure I follow. Could you expand on that?
EDIT: Wikipedia says this:
https://en.wikipedia.org/wiki/Post-quantum_cryptography
The citation there is from a 2010 paper, which is old and is just saying that this is believed to be the case.
This page, a year old, says that it is believed that the weakening from use of Grover's algorithm is not sufficient to make AES-128 practically breakable, and that at some point in recent years it was determined that the doubling was not necessary.
https://crypto.stackexchange.com/questions/102671/is-aes-128-quantum-safe
Keeping in mind that I am about twenty years behind the current situation and am just skimming this, it sounds like the situation is that one cannot use an attack that previously had been believed to be a route to break some shorter key length AES using quantum computing, so as things stand today, we don't know of a practical route to defeat current-keylength AES using any known quantum computing algorithm, even as quantum computers grow in capability.
Oh so both hashes and synmetric cryptography are secure entirely by doubling up the key size. Interesting.
You know way more than I do.
That's not my understanding, which is that it's more-secure than that and doesn't require the doubling. Assuming the pages I linked are correct and that the understanding of them from my skim is correct, both of which may not be true:
About a decade-and-a-half ago, it was believed that AES of existing key lengths could be attacked via a known quantum algorithm -- Grover's algorithm -- using future quantum computers. However, the weakness induced was not sufficient to render AES of all key lengths practically vulnerable. it would be viable to simply increase key lengths, not redesign AES, sufficient to make it not attackable via any kind of near-future quantum computers.
At some point subsequent to that, it was determined that this attack would not be practical, even with the advance of quantum computers. So as things stand, we should be able to continue using AES with current keylengths without any kind of near-future quantum computer posing a practical risk.
Take all that with a huge grain of salt, as I'm certainly not well-versed in the state of quantum cryptography, and I'm just summarizing a few webpages which themselves may be wrong. But if it's correct, you were right originally that there aren't going to be near-term practical attacks on AES from the advance of quantum computing, not from any presently-known algorithm, at least.