56
submitted 1 year ago by Bobo@lemm.ee to c/science@beehaw.org

A key function of our immune system is to detect and eliminate foreign pathogens such as bacteria and viruses. Immune cells like T cells do this by distinguishing between different types of proteins within cells, which allows them to detect the presence of infection or disease.

A type of T cell called cytotoxic T cells can recognize the mutated proteins on cancer cells and should therefore be able to kill them. However, in most patients, cancer cells grow unchecked despite the presence of T cells.

The current explanation scientists have as to why T cells fail to eliminate cancer cells is because they become “exhausted.” The idea is that T cells initially function well when they first face off against cancer cells, but gradually lose their ability to kill the cancer cells after repeated encounters.

Cancer immunotherapies such as immune checkpoint inhibitors and CAR-T cell therapy have shown remarkable promise by inducing long-lasting remission in some patients with otherwise incurable cancers. However, these therapies often fail to induce long-term responses in most patients, and T cell exhaustion is a major culprit.

We are researchers who study ways to harness the immune system to treat cancer. Scientists like us have been working to determine the mechanisms controlling how well T cells function against tumors. In our newly published research, we found that T cells become exhausted within hours after encountering cancer cells. T cells recognize tumor cells by the specific proteins called antigens they display on their surfaces. Timing T cell exhaustion

By the time most patients are diagnosed with cancer, their immune system has been interacting with developing cancer cells for months to years. We wanted to go back earlier in time to figure out what happens when T cells first encounter tumor cells.

To do this, we used mice genetically engineered to develop liver cancers as they age, similarly to how liver cancers develop in people. We introduced trackable cytotoxic T cells that specifically recognize liver cancer cells to analyze the T cells’ function and monitor which of the genes are activated or turned off over time.

We also used these same trackable T cells to study their response in mice infected with the bacteria Listeria. In these mice, we found that the T cells were highly functional and eliminated infected cells. By comparing the differences between dysfunctional T cells from tumors and highly functional T cells from infected mice, we can home in on the genes that code for critical proteins that T cells use to regulate their function.

In our previous work, we found that T cells become dysfunctional with dramatically altered genetic structure within five days of encountering cancer cells in mice. We had originally decided to focus on the very earliest time points after T cells encounter cancer cells in mice with liver cancer or metastatic melanoma because we thought there would be fewer genetic changes. That would have allowed us to identify the earliest and most critical regulators of T cell dysfunction.

Instead, we found multiple surprising hallmarks of T cell dysfunction within six to 12 hours after they encountered cancer cells, including thousands of changes in genetic structure and gene expression.

top 3 comments
sorted by: hot top controversial new old
[-] Jazard23@lemmy.blahaj.zone 5 points 1 year ago

With what we already knew on immune cell "shelf life" and tumor micro-environments, this was to be expected. Still, good that they confirmed suspicions, also on a genetic level.

I just wonder in what direction the researchers want to take this, because of course Listeria will boost a T-cell response, everything in bacteria boost it. Are we going to put LPS in a tumor?

[-] TheTimeKnife@beehaw.org 5 points 1 year ago* (last edited 1 year ago)

Maybe we can find a way to use more bacteria derived molecules as immune signaling tools. Hook up listeria antigens to tumor marker drugs used for imaging. Might even be possible to boost the response with something similar to an MRNA vaccine for that antigen.

[-] Bobo@lemm.ee 4 points 1 year ago

Interesting ideas..

this post was submitted on 11 Sep 2023
56 points (100.0% liked)

Science

13051 readers
1 users here now

Studies, research findings, and interesting tidbits from the ever-expanding scientific world.

Subcommunities on Beehaw:


Be sure to also check out these other Fediverse science communities:


This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.

founded 2 years ago
MODERATORS